J. Chem. Research (S), 2003, 509–510

A new antitumour sesquiterpene from the *Euonymus* nanoides[†]

Hong Wang^a, Xuan Tian^{b*} and Yuanjiang Pan^{a*}

^aDepartment of Chemistry, Zhejiang University, Hanzhou 310027, P. R. China ^bNational Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China

A new (1) and a known (2) β -dihydroagarofuran sesquiterpene polyol ester were isolated from *Euonymus nanoides* and they showed antitumor activities in *vitro*.

Keywords: antitumour sesquiterpene, Euonymus nanoides

The family Celastraceae is a rich source of biologically active β -dihydroagarofuran sesquiterpene polyol esters.¹ In a previous study, we have described the isolation of several dihydro- β -agarofuran sesquiterpenes from this family.^{2, 3} *Euonymus nanoides* Loes. is folk medicinal plant of Celastraceae which is widely distributed in China. Recently, we have isolated a new (1) and a known (2) β -dihydroagarofuran sesquiterpene polyol ester. Compound 2 was identified by comparison of this spectroscopic data (NMR and MS) with the data of published compounds.⁴

Compound 1, yellow oil, analysed for $C_{33}H_{44}O_{11}$ by FABMS: m/z 617 [M+1]⁺ and NMR spectra data (Table 1). The IR spectrum revealed a characteristic ester absorption band at 1739 cm⁻¹. The NMR spectra suggested the presence of three acetate esters [δ_H 2.09 s, 2.11 s, 2.20 s (2×3H); δ_{C} 20.7, 21.6, 21.2, 169.4, 170.4, 171.0 (3×Ac)], one benzoate ester [$\delta_{\rm H}$ 7.45 t (2H), 7.55 t (1H), 8.04 d (J=8.0 Hz, 2H); δ_{C} 128.3 (2C), 129.4, 130.2 (2C), 133.3, 165.4] and one α -methyl-butanoate esters [$\delta_{\rm H}$ 0.54 t (3H), 0.80 d (J=6.8 Hz, 3H), 0.88 m (1H), 1.18 m (1H), 2.01 m (1H); δ_C 11.9, 15.9, 25.4, 40.7, 173.8]. The NMR data for the parent ring system was very similar to those of 2, suggesting that 1 contains pentasubstituted- β -dihydroagarofuran skeleton. The location of the protons have been confirmed by the ¹H-¹H COSY spectrum. The signals at δ 5.65 (d, J=4.0 Hz, H-1), 5.53 (m, H-2), 6.15 (s, H-6) and 5.34 (t, H-9) were assigned to four protons attached to carbon atoms bearing secondary ester groups, while signals at δ 4.80 (d, J=12.8Hz, H-13a) and δ 4.56 (d, J=12.8Hz, H-13b) were assigned to the two protons attached to carbon atoms bearing primary ester groups. The HMBC spectrum showed cross-peaks between H-9 and the carbonyl at δ 165.4 of the benzoate ester, H-1 and the carbonyl at δ 173.8 of the α -methyl-butanoate esters, H-13, H-2, H-6 and the carbonyl at δ 171.0, 170.4, 169.4 of three acetate esters, respectively. As is usually found in this class of skeleton, H-1 and H-6 have axial stereochemistry.^{5, 6} From the NOESY of 1 (Fig. 1), the correlation between H-1/H-9 and H-1/H-2 indicated the presence of H-9ax and H-2eq. Thus, compound **1** was shown to be 1β -(α -methyl)-butanoyl- 2β , 6α , 13-triacetoxy-9β-benzoyloxy-β- dihydroagarofuran.

Both compounds **1** and **2** were tested for *in vitro* antitumour against A₅₄₉, HL₆₀, BEL₇₄₀₂ and P₃₈₈.⁷ The IC₅₀ of **1** (A₅₄₉: 26.86 µg/ml; HL₆₀: 27.96 µg/ml; BEL₇₄₀₂: 28.69 µg/ml; P₃₈₈: 34.96 µg/ml) show able to inhibit activity. However, compound **2** was inactive with all IC₅₀ > 50 µg/ml.

Table 1	The NMR data of 1 (400MHz, CDCl ₃)	
No.	δ_{C} (DEPT)	δ_{H} (J_{Hz})
1	70.0 (CH)	5.65 d (4.0)
2	68.3 (CH)	5.53 m
3	31.8 (CH ₂)	2.66 m
4	32.1 (CH)	2.37 m
5	89.8 (C)	
6	70.0 (CH)	6.15 s
7	43.4 (CH)	2.33 m
8	33.4 (CH ₂)	2.31 m
	· 2·	2.10 m
9	68.5 (CH)	5.34 t
10	51.3 (C)	
11	83.8 (C)	
12	14.1 (CH ₃)	1.28 d (7.7)
13	65.7 (CH ₂)	4.80 d (12.8)
	- <u>-</u>	4.56 d (12.8)
14	29.5 (CH ₃)	1.42 s
15	24.8 (CH ₃)	1.45 s

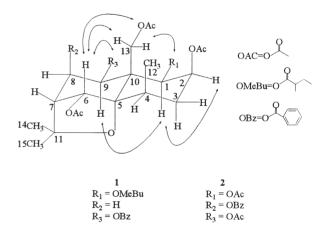


Fig. 1 Major NOESY correlations in 1.

Experimental

IR: KBr. UV: Shimadzu UV-260 spectrometer. ¹H and ¹³C NMR: 400MHz, CDCl₃ with TMS as internal standard. MS: EI. 70ev and HP-5988MS spectrometer. Optical rotation was measured with a Perkin Elmer Model 341.

The seeds of *Euonymus nanoides* Loes. were collected in Luqu country, Gansu province of China in October 1997, and identified by J. Z. Sun (Department of Biology, Lanzhou University).

Dried, powdered seed (1.2 kg) of *E. nanoides* were extracted with acetone by percolation at room temperature to give a residue (102.8 g) after evaporation. This residue was separated on CC with a gradient of petroleum ether (60–90 °C) –acetone as eluent. Compound 1 was isolated during elution with petroleum ether (60–90 °C)-acetone (8:1) and compound 2 during elution with petroleum ether (60–90 °C)-acetone (5:1). The TLC using solvent systems for 1 and 2 gave 7.5 mg and 1.4 mg, respectively.

^{*} To receive any correspondence. E-mail: cheyjpan@zju.edu.cn

[†] This is a Short Paper, there is therefore no corresponding material in J Chem. Research (M).

Compound **1**, $C_{33}H_{44}O_{11}$, yellow oil, $[\alpha]_D^{20}$: +26.0° (CHCl₃, c 0.70); IR ν_{max}^{KBr} : 2929, 1739, 1606, 1237, 1050, 889, 757 cm⁻¹; UV λ_{max}^{McOH} : 204, 231, 275 nm; EIMS: m/z (%) 616 [M]⁺ (4.6), 436 [M-AcO-BzO]⁺ (14.0), 336 [436+H-MeBuO]⁺ (58.0), 212 [M-3AcOH-BzOH-MeBuOH]⁺ (93.0), 50 (100); FABMS: m/z 617 [M+H]⁺.

Received 1 February 2003; accepted 19 April 2003 Paper 03/1782

References

1 Z.B.M. Tincusi, I.A. Jimenez, A.G. Ravelo and R. Missico, J. Nat. Prod., 1998, 61, 1520.

- 2 H. Wang, X. Tian and Y.Z. Chen, *Chin. Chem. Lett.*, 2002, **13**, 1063.
- 3 H. Wang, L. Yang, X. Tian and Y.Z. Chen, *Pharmazie*, 2001, **56**, 889.
- 4 I. Rozsa and I. Pelczer, J. Chem. Soc. Perkin Trans I, 1989, 1089.
- 5 H.C. Huang, C.C. Shen, C.F. Chen, Y.C. Wu and Y.H. Kuo, *Chem. Pharm. Bull.*, 2000, **48**, 1079.
- 6 W. Wu, M. Wang, J. Zhu, W. Zhou, Z. Hu and Z. Ji, *J. Nat. Prod.*, 2001, **64**, 364.
- 7 R.J. Bergeron, P.F. Cavanaugh, S.J. Kline, R.G. Hughes, G.T. Elliot and C.W. Porter, *Biochem. Bioph. Res. Comm.*, 1984, **121**, 848.